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Comment

Using Bayesian parameter estimation to 
learn more from data without black boxes
Rachel C. Kurchin

In an age of expensive experiments and hype 
around new data-driven methods, researchers 
understandably want to ensure they are 
gleaning as much insight from their data as 
possible. Rachel C. Kurchin argues that there is 
still plenty to be learned from older approaches 
without turning to black boxes.

At the core of the scientific enterprise is learning from data, often 
through describing it by parameterizing a mathematical model. And 
yet, across a wide swath of science, despite the existence of a wide 
variety of types of data and models, the go-to technique for this param-
eterization is almost always the same: minimizing the squared error 
(classical regression). A key assumption of this approach is that there 
exists a single optimal point in the parameter space. However, there is  
an alternative that doesn’t force this assumption on us: Bayesian 
parameter estimation (BPE). It instead works with a probability distri-
bution in the space of the model parameters. Doing so offers a variety 
of other advantages, including facile incorporation of information from  
other sources and prospective evaluation of the impact of additional 
data collection.

The value of BPE may not be immediately obvious in a data- 
abundant and data-enthusiastic age, in which it is tempting to turn to 
contemporary machine learning methods such as neural networks 
to distill insights from data when classical regression is insufficient. 
Indeed, these can be powerful tools in certain contexts, but they should 
not necessarily be treated as ‘frontline’ tools, as there are not currently 
reliable methods to interpret, or bound errors of, these methods. BPE, 
coupled with traditional numerical simulation, is an appealing path to 
thinking outside the black box.

The Bayesian approach
The most common approach to parameter estimation is to frame it as 
an optimization problem over the parameters, with the goal of mini-
mizing some distance function (typically the sum of squared errors) 
between the model predictions and the measured data by identify-
ing the ‘best fit’ set of parameters. The minimum achievable value  
of the distance function is often used as a goodness-of-fit metric to 
assess the appropriateness of the model for the data and potentially 
to suggest the presence of effects unaccounted for by the model. Its 
landscape in the neighbourhood of the best-fit point can also give some 
insights regarding confidence intervals and local correlation structure.

By contrast, BPE instead produces, as a fundamental output of its 
analysis, a probability distribution in the space of the model param-
eters. This distribution, in the Bayesian interpretation, reflects, for 
each combination of parameter values, the strength of belief that is 

justified in it being the ‘correct’ one to describe the given data. BPE is 
built on Bayes’ theorem, which states
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where E represents some evidence (in this case, the observed data) and 
H a hypothesis (in this case, a point in the parameter space).

In essence, Bayes’ theorem shows how to ‘convert’ a likelihood 
(the probability of observing some evidence in a world where our 
hypothesis is true) to a posterior (the probability of our hypothesis 
being true, given we have observed the evidence). An important note 
is that the likelihood function operates fundamentally in the observa-
tion space, in which the data (E) lives. The posterior, conversely, exists 
in the parameter space, in which the hypotheses (H) live.

To frame subsequent discussion in a concrete context, consider 
the case (Fig. 1) of an object launched from an initial height of 0, with an 
unknown initial velocity v0 and on some planet with an unknown value 
of g. We thus wish to estimate the two parameters v0 and g. The model 
function is the kinematic equation
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The prior distribution is a choice that must be made by the practi-
tioner. In principle, it can be a way to include one’s prior beliefs in the 
analysis; in practice, given enough data, often all that matters about 
the prior is that it is nonzero in all plausible regions of the parameter 
space. For our purposes, we presume a uniform prior over a rectangular 
region of parameter space.

In the general case of Bayesian inference, the likelihood func-
tion can take many forms. For the specific case of fitting a model to 
experimental observations, if we presume that the observations  
(ti, yi

meas) come equipped with (potentially pointwise) uncertainty or 
error estimates ∆yi, a Gaussian likelihood is a reasonable choice:
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This choice is also the most analogous to least-squares regres-
sion, which is equivalent to maximum likelihood estimation under 
the assumption of normally distributed errors. Likelihoods associated 
with two different height measurements can be found in Fig. 1a and d.

Finally, we need to compute the evidence, which serves as the 
normalization constant of our posterior distribution. There are a vari-
ety of approaches to do so. The conceptually simplest is to divide the 
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in hand, it is easy to interrogate the broader parameter landscape, 
beyond just the local curvature implied by the confidence intervals 
and correlation accessible in standard regression. Insights can also 
be gleaned into identifiability of a system given the specific observed 
data. However, this landscape could be qualitatively accessible as a loss 
landscape without the need for a probabilistic approach, and so the 
real strength comes from the ability to do operations most naturally 
done on distributions. For example, it is straightforward to margin-
alize a posterior to account for nuisance parameters, or condition it 
based on information from other sources. This is demonstrated in the 
bottom row of Fig. 1, where a direct measurement of initial velocity 
is incorporated by conditioning the posterior. Similarly, if the goal 
were only to learn about the gravitational acceleration, one could 
marginalize over v0 by integrating it out of the distribution to create a 
single-variable posterior over g. Within a regression approach, it would 
be much less straightforward to account for these heterogeneous 
measurement types.

parameter space into a regular grid, in which case the normalization 
comes ‘for free’ by summing the product of the prior and the likeli-
hood over every grid point. However, this approach is only tractable 
if hard bounds on all parameters are known, and the dimensional-
ity of the parameter space and computational cost of the model are  
sufficiently low.

Other approaches fall broadly into two categories. The first is 
using Markov Chain Monte Carlo to build up a numerical approxi-
mation to the evidence (or directly to the posterior distribution) via 
iterative sampling. The second is variational inference, in which the 
distribution is approximated via a set of basis functions1. There are 
active efforts in methods development in both categories, aimed at 
improving convergence behaviour and reducing computational cost.

A distribution as the fundamental object
There are a variety of advantages to working directly with a prob-
ability distribution in the parameter space. With this distribution 
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Fig. 1 | Bayesian parameter estimation for experiments on a projectile 
launched from a height of 0 with unknown initial velocity and subject 
to unknown gravitational acceleration. a–c, Likelihood, with associated 
uncertainty, for one measurement (part a), the posterior after one measurement 
visualized across the parameter space (part b) and possible trajectories with 
opacity proportional to posterior probability (part c). d–f, Likelihood for a 
second measurement (part d), the posterior after two measurements (part e), 
and trajectories (part f) with the trajectories from part c underlaid at lower 
opacity for ease of comparison. g–i, Likelihood for a direct measurement of the 

initial velocity (part g), the posterior conditioned on this measurement (part h), 
and trajectories (part i) with trajectories from parts c and f underlaid. The 
trajectory corresponding to the ‘true’ parameters is shown in the dotted black 
lines. Throughout, three representative points in parameter space (coloured 
dots) are shown to illustrate the correspondence of these specific points across 
the visualizations. Measurements are indicated with vertical (parts c, f) and 
angular (part i) error bars. y, height; v0, initial velocity; g, acceleration due to 
gravity; t, time.
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The ability to marginalize and condition distributions also allows 
straightforward interrogation of the impact of a given data point or set 
of points on our degree of confidence in the result, either post hoc or 
prospectively. The latter case can be useful in active learning schemes 
that, for example, seek to maximize information gained from a finite 
experimental measurement budget (this approach forms the concep-
tual link between Bayesian parameter estimation and the related tech-
nique of Bayesian optimization). In addition, for many model selection 
tasks, a distribution is easier to work with, and can be assessed condi-
tionally. Furthermore, in cases where the parameters being estimated 
are best described as a distribution rather than as single scalar values, 
a probabilistic approach like BPE is the more natural and flexible choice.

Outlook
There are examples of researchers using BPE across a wide variety of 
fields such as physiology2, fluid mechanics3, energy devices4–6, and par-
ticle physics7. The fields of astronomy8, astrophysics9, and cosmology10 
have an especially strong culture of using Bayesian methods in their 
analysis of observational data and model formulation and fitting. This 
could be related to a culture of broad sharing of large datasets across the 
community, and interest in distributions of properties across popula-
tions of astronomical objects as well as inference of the parameters of 
underlying models. It likely is also because they deal with fundamental 
theories and questions at extreme length scales with many unknowns, 
extremely constrained observation, and virtually no ability to conduct 
controlled experiments in the conventional sense of directly probing a 
system to influence its behaviour. However, the advantages of proba-
bilistic methods such as BPE coupled with traditional modelling offer 
an approach worth serious consideration by a broader swath of the 
science and engineering research communities.
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